2)第四百六十三章 运动统计方程_饱食终日,加点修仙
字体:      护眼 关灯
上一章 目录 下一章
  一块宏观物质中的微观粒子产生的少量可被统计物理描述的非常态运动……怎么说呢,如果不忽略它,总觉得在实际工作场所中操作的人们蛮可怜的。

  如果说这“只是”通电导体的表征,还不够彰显精密器件可以忽视少量粒子运动的特性的话,那么以当前普遍公认最精密的器件硅基半导体来说。

  硅基半导体起步就是单晶硅,以前技术不达标,市面上也高过多晶硅和非晶硅的,但这俩玩意相比单晶硅来说,缺陷密度实在太高,在单晶硅生产技术和制造成本下降之后,这年头搞硅基半导体产业的基本都在做单晶硅。

  不过嘛,有些客户因为种种原因,非要买多晶硅或是非晶硅的产品,也是可以理解的。

  作为纯净度最高的基底单晶硅,假设其内部无缺陷,每立方厘米的原子密度约为五乘以十的二十二次方。

  这玩意一看就知道了,和铁单质的情况差距不大。

  再看实际工作的半导体结构,目前的民用制程普遍在3nm左右(应该?),其结宽度假设为3nm。别说十的十八次方的异常了,就算十的十九次方的异常,这玩意在3nm的结构里也不显眼啊。

  更别说这玩意也没有这么多的可移动电子供“运动统计”方程使唤,常温常压下,一个立方厘米的本征硅半导体,也就只有十的十次方个电子可看做自由移动的。

  就算这玩意全都按某一方向神秘地运动吧,落在3nm结构里头,太低了,太低了。

  由此可见,对过去物理界所熟悉的微观物质来说,无论是考虑其宏观现象还是考虑其工业微观现象,运动统计方程都可以抹去少量粒子的奇异运动,实现大差不差的需求。

  请收藏:https://m.3bqg.cc

(温馨提示:请关闭畅读或阅读模式,否则内容无法正常显示)

上一章 目录 下一章